Exercice - M0305C

Soit f la fonction définie par

$$f(x) = \ln(e^{2x} - e^x + 1)$$

1) f est définie pour toute valeur de x telle que $e^{2x} - e^x + 1 > 0$.

Méthode 1

Posons donc

$$h(x) = e^{2x} - e^x + 1$$

Etudions le signe de h(x). Pour cela étudions les variations de la fonction h

$$h'(x) = 2e^{2x} - e^x = e^x(2e^x - 1)$$

Donc

$$h'(x) \ge 0 \iff 2e^x - 1 \ge 0 \iff e^x \ge \frac{1}{2} \iff x \ge \ln \frac{1}{2}$$

Nous en déduisons le signe deh' puis les variaitons de h

$$h\left(\ln\left(\frac{1}{2}\right)\right) = e^{2\ln\left(\frac{1}{2}\right)} - e^{\ln\left(\frac{1}{2}\right)} + 1$$

$$= \left(e^{\ln\left(\frac{1}{2}\right)}\right)^2 - e^{\ln\left(\frac{1}{2}\right)} + 1$$

$$= \left(\frac{1}{2}\right)^2 - \frac{1}{2} + 1$$

$$= \frac{1}{4} - \frac{1}{2} + 1$$

$$= \frac{3}{4}$$

D'ou le tableau de variation de h.

x	$-\infty$		$ln \frac{1}{2}$		$+\infty$
h'(x)		_	0	+	
h(x)		¥	$\frac{1}{3}$	7	
h(x)			+		

Donc h est toujours stricement positive et donc f est définie sur \mathbb{R} .

Méthode 2

Posons $P(x) = x^2 - x + 1$. Nous avons alors

$$f(x) = \ln(P(e^x))$$

Or P(x) est un trinome de signe constant qui ne prend pas la valeur 0. En effet son discriminant est $\Delta = (-1)^2 - 4 \times 1 \times 1 = -3$. Donc

$$\forall x \in \mathbb{R} \qquad P(e^2 > 0)$$

Donc f est définie sur \mathbb{R} .

2a) Etudions les variations de f

$$f'(x) = \frac{2e^{2x} - e^x}{e^{2x} - e^x + 1}$$

Finalement

$$f'(x) = e^x (2e^x - 1)e^{2x} - e^x + 1$$

f' est du signe de $2e^x - 1$.

$$2e^x - 1 \ge 0 \iff e^x \ge \frac{1}{2} \iff x \ge \ln \frac{1}{2}$$

Autrement dit:

- f est croissante sur $\left[\ln \frac{1}{2}; +\infty\right[$
- f est déroissante sur $\left]-\infty; \ln \frac{1}{2}\right]$

La fonction présnte donc un minimum.

2b) Dressons le tableau de variation de f. Pour cela calculons les limites aux bornes du domaine.

 $En + \infty$

$$\lim_{x \to +\infty} e^{2x} - e^x + 1 = \lim_{x \to +\infty} e^{2x} \left(1 - e^{-x} + e^{-2x} \right) = +\infty$$

Car

$$\lim_{x \to +\infty} e^{-x} = 0 \qquad \lim_{x \to +\infty} e^{2x} = +\infty$$

Par composition

$$\lim_{x \to +\infty} \ln \left(e^{2x} - e^x + 1 \right) = +\infty \implies \lim_{x \to \infty} f(x) = +\infty$$

 $En -\infty$

$$\lim_{x \to -\infty} e^x = \lim_{x \to -\infty} e^{2x} = 0 \implies \lim_{x \to \infty} e^{2x} - e^x + 1 = 1$$

Par composition

$$\lim_{n \to \infty} \ln\left(e^{2x} - e^x + 1\right) = 0$$

Conclusion

$$\lim_{n \to -\infty} f(x) = 0 \qquad \lim_{n \to +\infty} f(x) = +\infty$$

Nous en déduisons le tableau de variation de f:

x	$-\infty$		$\ln \frac{1}{2}$		$+\infty$
f'(x)		_	0	+	
f(x)		¥	$\ln \frac{3}{4}$	7	

3) La fonction f présente un minimum en $x = \ln \frac{1}{2}$ qui est $\ln \frac{3}{4}$. Autrement, le point correspondant sur la courbe a pour coordonnées

$$A\left(\ln\frac{1}{2};\ln\frac{3}{4}\right)$$

Soit numériquement (-0, 69; -0, 29)

4 Etudions la position relative de \mathcal{C} et Δ . Etudions donc le signe de f(x) - 2x.

$$f(x) - 2x = \ln (e^{2x} - e^x + 1) - 2x$$

$$= \ln (e^{2x} (1 - e^{-x} + e^{-2x})) - 2x$$

$$= 2x + \ln (1 - e^{-x} + e^{-2x}) - 2x$$

$$= \ln (1 - e^{-x} + e^{-2x})$$

Donc

$$f(x - 2x \ge 0 \iff \ln(1 - e^{-x} + e^{-2x}) \ge 0 \iff 1 - e^{-x} + e^{-2x} \ge 1$$

L'inéquation se résout immédiatement

$$1 - e^{-x} + e^{-2x} \ge 1 \iff e^{-2x} \ge e^{-x} \iff -2x \ge -x \iff x \le 0$$

Conclusion:

- Pour $x \leq 0$, la courbe $\mathcal C$ est au dessus de Δ
- Pour x>0, la courbe $\mathcal C$ est au dessous de Δ

De plus,

$$f(x) - 2x = \ln(1 - e^{-x} + e^{-2x}) \implies \lim_{x \to +\infty} f(x) - 2x = 0$$

La droite Δ est donc une asymptote oblique de la courbe $\mathcal{C}.$

