Exercice - M0309

Définition : Une application $f: I \longrightarrow \mathbb{R}$ de classe C^{∞} est dite absolument monotone sur l'intervalle I de \mathbb{R} si $\forall n \in \mathbb{N}, f^{(n)} \geq 0$ sur I.

- 1a) Quelles sont les exponentielles absolument monotones sur \mathbb{R} ?
- **b)** Soit $f_{\alpha,\beta} \colon x \longrightarrow \frac{\alpha x + \beta}{x 1}$

Donner une condition nécessaire et suffisante sur α et β pour que $f_{\alpha,\beta}$ soit absolument monotone sur]0,1[.

c)(i) Soit $n \in \mathbb{N}$. Montre qu'il existe un unique polynôme réel P_n tel que :

$$\forall x \in \left[0, \frac{\pi}{2}\right[, \quad \tan^{(n)}(x) = P_n(\tan(x))\right]$$

- (ii) Montrer que P_n a des coefficients entiers naturels, et conclure que l'application tan est absolument monotone sur l'intervalle $\left[0, \frac{\pi}{2}\right]$.
- **2)** Soit $f(x) = \arcsin(x), x \in [0, 1]$
- a) Montrer que : $\forall x \in [0, 1], (1 x^2) f''(x) x \cdot f'(x) = 0$
- **b)** En déduire que : $\forall n \in \mathbb{N}$, $\forall x \in [0,1]$ $(1-x^2)f^{(n+2)}(x) (2n+1)xf^{(n+1)}(x) n^2f^{(n)}(x) = 0$
- c) Montrer que f est absolument monotone sur l'intervalle [0,1[.
- **3a)** Soient f et g, deux fonctions absolument monotones sur un intervalle I, et λ, μ deux réels ≥ 0 . Montrer que la fonction $\lambda f + \mu g$ est absolument monotone sur I. par
- b) Les fonctions absolument monotones sur I forment-elles un espace vectoriel, lorsque l'on munit leur ensemble des lois usuelles.
- **4a)** Soient f et g, deux fonctions absolument monotones sur un intervalle I. Montrer que $f\cdot g$ est absolument monotone sur I.
- **b)** En déduire que l'application $x \longrightarrow \tan^n(x), n \in \mathbb{N}$, est absolument monotone sur l'intervalle $\left[0, \frac{\pi}{2}\right[$.
- **5a)** Soient $f: I \longrightarrow J$ et $g: J \longrightarrow \mathbb{R}$, deux applications absolument monotones sur les intervalles I et J respectivement.

Montrer que $g \circ f$ est absolument monotone sur I.

Indication : On pourra montrer que $(g \circ f)^{(n)} \ge 0$ sur I par réccurence sur n.

- b) Montrer que si f est absolument monotone sur un interavlle I, e^f l'est aussi. Y-a-t-il une réciproque?
- c) Retrouver le résultat de la question 4b) sur l'application $x \longrightarrow \tan^n(x)$, $n \in \mathbb{N}$.
- d) Donner un exemple de deux fonctions f et g pour lesquelles $f \circ g$ est absolument monotone mais pas $g \circ f$.
- 6) Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$, une application absolument monotone. Soient x et a, deux réels. On pose

$$S_n(a,x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

- a) On suppose $x \geq a$. Montrer que la suite $(S_n(a, x))$ est croissante.
- b) En appliquant convenablement les inégalités de Taylor-Lagrange, montrer que $(S_n(a,x))$ est majorée par f(x) et conclure que cette suite converge.
- c)(i) On suppose maintenant $x \le a$ et on pose y = 2a x. Montrer que :

$$\forall (p,q) \in \mathbb{N}^2 \qquad |S_p(a,x) - S_q(a,x)| \le |S_p(a,y) - S_q(a,y)|$$

1

- (ii) Conclure que la suite $(S_n(a, x))$ converge encore si $x \leq a$.
- \mathbf{d})(i) Soient a et x, deux réels. Justifier l'inégalité :

$$\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} \right| \le \frac{K_{n+1}}{(n+1)!} \cdot |x - a|^{n+1}$$

ou $K_{n+1} = f^{(n+1)}(x)$ si $x \ge a$ et $K_{n+1} = f^{(n+1)}(a)$ si $x \le a$.

(ii) En déduire que $(S_n(a,x))$ converge vers f(x).

On a donc obtenu le résultat suivant : Soit $f \colon \mathbb{R} \longrightarrow \mathbb{R}$ une application absolument monotone. Alors :

$$\forall (a,x) \in \mathbb{R}^2, \quad f(x) = \sum_{k=0}^{+\infty} \frac{f^{(k)}(a)}{k!} \cdot (x-a)^k$$

Une telle fonction, développable en série entière, est dite analytique sur \mathbb{R} .

- 7) Soit à nouveau $f: \mathbb{R} \longrightarrow \mathbb{R}$, une application absolument monotone. On suppose qu'il existe $p \in \mathbb{N}$ et $x_0 \in \mathbb{R}$ tels que $f^{(p)}(x_0) = 0$.
- a) Montrer que $\forall k \geq p, \forall x \in]-\infty, x_0], \quad f^k(x) = 0$
- b) En déduire que f est un polynome constant positif sur \mathbb{R} .
- 8) Soit $f:]a, b[\longrightarrow \mathbb{R}$, une fonction absolument monotone sur]a, b[, ou $(a, b) \in \mathbb{R}^2$. Montrer que l'on peut prolonger f en une fonction de classe C^{∞} , absolument monotone sur [a, b[.
- **b)** A-t-on la même propriété sur [a, b].
- 9) Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une application.

On rappelle que $\mathbb{R}^{\mathbb{R}}$ désigne l'ensemble des application des \mathbb{R} dans \mathbb{R} .

Pour h, rélle ≥ 0 , on définit l'application $\Delta_h \colon \mathbb{R}^{\mathbb{R}} \longrightarrow \mathbb{R}^{\mathbb{R}}$ par :

 $\Delta_h(f) \colon x \longrightarrow f(x+h) - f(x)$ si f est un élément de $\mathbb{R}^{\mathbb{R}}$.

- a) Montrer que si f est absolument monotone, $\Delta_h(f)$ l'est aussi.
- **b)** Montrer que : $\forall n \in \mathbb{N}, \quad \forall x \in \mathbb{R}, \quad \Delta_h^n(f)(x) = \sum_{j=0}^n (-1)^j \cdot \binom{n}{j} \cdot f(x+jh)$

ou Δ_h^n désigne la composée $\Delta_h \circ \Delta_h \circ \cdots \circ \Delta_h$ (n facteurs).

c) En déduire que si f est absolument monotone sur \mathbb{R} , on a :

$$\forall n \in \mathbb{N}, \quad \forall x \in \mathbb{R}, \quad \Delta_h^n(f)(x) = \sum_{j=0}^n (-1)^j \cdot \binom{n}{j} \cdot f(x+jh) \ge 0$$

10) Réciproque $\Delta_h^n(f)(x) > 0 \implies f^{(n)}(x)$ monotone