Exercice - P0058C

- 1) On cherche a établir la température d'équilibre moyenne de la terre, sous l'effet du rayonnement solaire et du rayonnement de la terre.
- a) Etablissons le bilan radiatif de la terre. La terre recoit une énergie E_s du soleil, renvoi une partie de l'énergie par réflexion E_r et rayonne une énergie E_e vers l'espace par rayonnement du corps noir. A l'équilibre thermique, le premier principe de la thermodynamique impose

$$E_s = E_e + E_r$$

Calculons E_e . Soit S la surface terrestre et ϕ_e le flux rayonné. ϕ_e est donné par la loi de Stefan.

$$\phi_e = \sigma T^4$$

Et donc

$$E_e = \phi_e S = S \sigma T_e^4$$

Calculons l'énergie moyenne reçue du soleil. Soit ϕ le flux solaire. La terre apparait face au rayon solaire comme un disque de rayon R.

$$E_s = \phi \pi R^2$$

Compte-tenu de la rotation de la terrre, cette énergie se réparti sur l'ensemble de la surface terreste, ce qui conduit à un flux solaire moyen

$$\phi_0 = \frac{E_s}{4\pi R^2} = \frac{\phi \pi R^2}{4\pi R^2} = \frac{\phi}{4}$$

Enfin E_r s'exprime en fonction de l'énergie solaire reçue et de l'albedo.

$$E_r = \alpha E_s$$

On a alors

$$E_s = \phi_0 S = \frac{\phi}{4} S$$

On en déduit alors

$$\frac{\phi}{4}S = S\sigma T_e^4 + \alpha \frac{\phi}{4}S$$

Le bilan radiatif conduit donc a

$$(1 - \alpha)\frac{\phi}{4} = \sigma T_e^4$$

b) On en déduit immédiatement la température d'équilibre.

$$T_e = \sqrt[4]{(1-\alpha)\frac{\phi}{4\sigma}}$$

Numériquement, nous obtenons

$$T_e = \sqrt[4]{(1-0,3)\frac{1366}{4\times5,67\times10^{-8}}} = 254,81 \text{ K}$$

Ainsi la température moyenne sur terre serait de -18° C en l'absence d'atmosphère, valeur que l'on retrouve dans le cours de SVT... Cette valeur est très éloignée de la réalité puisque la température terrestre moyenne est d'environ 15°C.

2) On tient compte maintenant de la présence d'une atmosphère absorbante responsable d'un effet de serre. Nous modélisons l'atmosphère par une couche absorbante à la température T_a si rayonnera de l'énergie comme tout corps chaud.

1

La situation est représentée sur la figure ci-après.

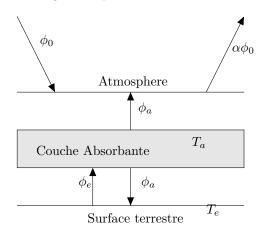


FIGURE 1 – Modelisation avec atmosphere

a) Etablissons le bilan radiatif de la terre. L'analyse est la même que dans la question précédent, mais la terre reçoit en plus une partie de l'énergie rayonnée par l'atmosphère. A l'équilibre thermique

$$\phi_0 S + \phi_a S = \phi_e S + \alpha \phi_0 S$$

Et donc

$$(1 - \alpha)\phi_0 + \phi_a = \phi_e$$

b) Etablissons le bilan énergie pour la couche atmosphérique absorbante. Nous avons

$$\phi_e = 2\phi_a$$

On en déduit immédiatement en utilisant la loi de Stefan

$$\sigma T_e^4 = 2\sigma T_a^4 \implies Te = \sqrt[4]{2}T_a = 1,189T_a$$

c) Nous avons donc

$$\begin{cases} \phi_e = 2\phi_a \\ (1 - \alpha)\phi_0 + \phi_a = \phi_e \end{cases}$$

Nous en déduisons

$$(1-\alpha)\phi_0 = \phi_e - \phi_a = \phi_e - \frac{\phi_e}{2} = \frac{\phi_e}{2}$$

puis

$$(1-\alpha)\frac{\phi}{4} = \frac{\sigma T_e^4}{2}$$

Et finalement

$$T_e = \sqrt[4]{(1-\alpha)\frac{\phi}{2\sigma}}$$

Numériquement, nous obtenons

$$T_e = \sqrt[4]{(1-0,3)\frac{1366}{2\times5,67\times10^{-8}}} = 303 \text{ K}$$

La température terrestre est alors égale à $30^{\circ}\mathrm{C}$ environ.